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Abstract
We find that the statistics of levels undergoing the metal–insulator transition
in systems with Gaussian disorder and non-interacting electrons behaves in a
way similar to that of the single parametric Brownian ensembles (Dyson 1962
J. Math. Phys. 3 1191). The latter appear during a Poisson → Wigner–Dyson
transition, driven by a random perturbation. The analogy provides analytical
evidence for the single-parameter scaling of the level correlations in disordered
systems as well as a tool to obtain them at the critical point for a wide range of
disorders.

The spectral correlations of a disordered system are very sensitive to the behaviour of its
eigenfunctions. The presence of disorder may cause localized waves in the system, implying
lack of interaction between certain parts. This is reflected in the structure of the Hamiltonian
matrix which is sparse in the site representation. The degree of sparsity of the matrix is governed
by various system parameters e.g. dimensionality, shape, size and boundary conditions of the
system. The variation of the disorder strength can lead to a metal–insulator transition (MIT),
with eigenfunctions changing from a fully extended state (metal) to a strongly localized one
(insulator) with partial localization in the critical region. The associated Hamiltonian also
undergoes a transition, (in effect only due to variation of the relative strength of its elements),
from a full matrix to a sparse or banded form and finally to a diagonal matrix. The statistical
studies of levels for various degrees and types of disorders as well as system conditions require,
therefore, analysis of different ensembles. Here the nature of the localization and its strength
is reflected in the measure and the sparsity of the ensemble, respectively. Our objective in this
paper is to obtain a mathematical formulation for the level correlations, common to a large
class of system conditions (with Gaussian type randomness); the system information enters the
formulation through a parameter, basically a function of various system parameters influencing
the localization.

Recently it was shown that the eigenvalue distributions of various ensembles, with a multi-
parametric Gaussian measure and independent matrix elements, appear as non-equilibrium
stages of a Brownian type diffusion process [2]. Here the eigenvalues evolve with respect to
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a single parameter which is a function of the distribution parameters of the ensemble. The
parameter is therefore related to the complexity of the system represented by the ensemble and
can be termed as the ‘complexity’ parameter. The solution of the diffusion equation for a given
value of the complexity parameter gives the distribution of the eigenvalues, and thereby their
correlations, for the corresponding system. A similar diffusion equation is known to govern
the evolution of the eigenvalues of Brownian ensembles (BE) [1, 3] and many of its solutions
for various initial conditions have already been obtained [4]. The analogy can then be used to
obtain the level correlations for the Gaussian random matrix models of the disordered systems
with non-interacting electrons. The presence of interactions introduces a correlation between
matrix elements of the ensemble representing the system; the details of this case are discussed
elsewhere [5].

The correlations in the single-electron spectra of disordered metals are governed by a
variety of parameters, e.g. the associated energy ranges, degree of disorder, the dimensionality
of the system etc. Here the two energy scales playing the dominant role are the Thouless energy
Ec and the mean level spacing �. The Ec is given by the timescale needed by the wavepacket to
diffuse through the sample. In the diffusive (metallic) regime and for energy scales δE smaller
then Ec, the spectral correlations are well modelled by Wigner–Dyson (WD) ensembles [3].
For δE > Ec, the statistics deviate from the Wigner–Dyson case; however, the deviations are
negligible for sample size L → ∞. In the localized (insulator) phase too, the correlations are
energy dependent but, in the limit L → ∞, the levels are completely uncorrelated and their
statistics can be modelled by the Poisson ensemble. However, the statistics in the critical region
near the metal–insulator transition (Anderson type) is different from both Wigner–Dyson as
well as Poisson statistics and depends on various system dependent features [7, 8]. Our study
shows that the multi-parametric level statistics in the critical region can be well modelled by
the single-parametric Brownian ensembles.

The paper is organized as follows. Section 1 contains a brief description of the simplest
model of a disordered system using the independent electron approximation and the equation
governing the evolution of its eigenvalues due to change of disorder etc. The properties of the
BEs useful for the present study are given in section 2. Section 3 deals with the determination of
the single parameter � governing the level statistics during MIT using the BE analogy. It also
provides an explanation, in terms of �, of some of the observed features of the AE statistics.
In section 4, the AE–BE analogy is used to obtain the analytical formulation of some of
the unknown spectral fluctuations during MIT. Section 5 contains the details of the numerical
comparison of the level statistics of the Anderson Hamiltonian with that of BEs and reconfirms
our analytical results. The studies during the last decade indicate the surprising success of
power law random banded matrices (1D system) as a model for Anderson ensembles [6]; as
discussed in section 6, the success can be explained within the � formulation of the level
statistics.

1. The multi-dimensional Anderson Hamiltonian

The Anderson model for a disordered system is described by a d-dimensional disordered
lattice, of size L, with a Hamiltonian H = ∑

n εna+
n an −∑

n �=m bmn(a+
n am + ana+

m) in the tight-
binding approximation. The site energies εn , measured in units of the overlap integral between
adjacent sites, correspond to the random potential. The hopping is assumed to connect only
the z nearest neighbours (referred to by m) of each site. In the site representation, H turns
out to be a sparse matrix of size N = Ld with diagonal matrix elements as the site energies
Hkk = εk . The off-diagonals Hkl describe the interaction between two sites k and l; here,
Hkl for two sites connected by hopping will be referred to as the hopping off-diagonal and
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the rest as non-hopping off-diagonals. The level statistics of H can therefore be studied by
analysing the properties of an ensemble of (i) sparse real symmetric matrices in the presence
of a time-reversal symmetry and (ii) sparse complex Hermitian matrices in the absence of a
time reversal.

We consider an ensemble of Anderson Hamiltonians (later referred to as an Anderson
ensemble) with a Gaussian type disorder. The site energies Hkk = εk are thus independent
Gaussian distributions ρkk(Hkk) = e−(Hkk−bkk )

2/2hkk with variance hkk and mean bkk . The
hopping can be chosen to be isotropic or anisotropic, non-random or random (Gaussian). A
general form of the probability density ρ(H ) ≡ ∏

k,l;k�l ρkl (Hkl) of the ensemble, including
all the above possibilities, can therefore be given by

ρ(H, h, b) = C exp

[
−

β∑
s=1

∑
k�l

(1/2hkl;s )(Hkl;s − bkl;s )2

]
(1)

with subscript ‘s’ of a variable referring to its components, β as their total number (β = 1
for the real variable, β = 2 for the complex one), C as the normalization constant, h as the
set of the variances hkl;s = 〈H 2

kl;s 〉 and b as the set of all mean values 〈Hkl;s 〉 = bkl;s . As
is obvious, in the limit hkl;1, hkl;2 → 0, equation (1) corresponds to the non-random nature
of Hkl (that is, ρkl(Hkl) = δ(Hkl − bkl)). Note that although the non-hopping off-diagonals
in Anderson matrix always remain zero the effective sparsity of the matrix changes due to
change in the relative strength of the diagonals and the hopping off-diagonals. Thus, in the
insulator limit (with almost no overlap between site energies due to strong disorder), the matrix
behaves effectively as a diagonal one, the diagonals being very large as compared to hopping
off-diagonals. In the opposite limit of very weak disorder when an average diagonal is nearly
of the same strength as an average off-diagonal, the statistical behaviour of the matrix is the
same as that of a matrix taken from a Wigner–Dyson ensemble [3]. The latter are the basis-
invariant Gaussian ensembles of Hermitian type, with the same variance for almost all matrix
elements. The statistical behaviour of levels in the Wigner–Dyson ensembles depends only on
their symmetry class and is therefore universal in nature. The three main universality classes
are described by a parameter β, basically a measure of the degree of level repulsion [3]:

(i) GOE with β = 1, corresponding to time-reversal symmetry and integer angular
momentum,

(ii) GUE with β = 2 and no time-reversal symmetry,
(iii) GSE with β = 4 and time-reversal symmetry but half integer angular momentum.

A variation of disorder and hopping rate changes the distribution parameters of the
probability density ρ(H ) and thereby its statistical properties. Using the Gaussian nature of
ρ, it is easy to verify that under a change of parameters hkl → hkl + δhkl and bkl → bkl + δbkl

the matrix elements Hkl undergo a diffusion dynamics along with a finite drift,∑
k�l;s

[
(2/g̃kl)xkl;s

∂ρ

∂hkl;s
− γ bkl;s

∂ρ

∂bkl;s

]
=

∑
kl;s

∂

∂ Hkl;s

[
gkl

2

∂

∂ Hkl;s
+ γ Hkl;s

]
ρ (2)

where xkl;s ≡ 1 − γ g̃kl hkl;s with g̃kl = 2 − δkl and gkl = 1 + δkl . γ is an arbitrary parameter,
giving the variance of the matrix elements at the end of the evolution [2]. The above equation
describes a multi-parametric flow of matrix elements from an arbitrary initial condition, say
H0. However, as discussed in [2], it is possible to define a ‘complexity’ parameter Y , a function
of various distribution parameters hkl;s and bkl;s , in terms of which the matrix elements undergo
a single parametric diffusion,

∂ρ

∂Y
=

∑
kl;s

∂

∂ Hkl;s

[
gkl

2

∂

∂ Hkl;s
+ γ Hkl;s

]
ρ (3)
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with

Y = − 1

2Mγ
ln

[∏
k�l

′ β∏
s=1

|xkl;s ||bkl;s |2
]

+ C (4)

where
∏′ implies a product over non-zero bkl;s and xkl;s . Further, C is a constant determined by

the initial distribution, M is the number of all non-zero parameters xkl;s and bkl;s and β = 1, 2
for Hamiltonians with and without time-reversal, respectively.

The solution of equation (3) gives the state ρ(H, Y |H0, Y0) of the flow at parameter
Y , starting from an initial state H0 with Y = Y0. An integration over initial probability
density result in the density given by equation (1) in terms of Y (h, b): ρ(H, Y ) =∫

ρ(H, Y |H0, Y0)ρ(H0, y0) dH0. The evolution reaches a steady state when ∂ρ/∂Y → 0
with the ensemble ρ(H ) approaching the Wigner–Dyson limit, ρ ∝ e−(γ /2)Tr H 2

.
As implied by equation (3), the variation of ρ(H |H0) depends on the changes of the

parameters hkl , bkl (for all k, l) only through a function Y . This can be proved by considering
a transformation of the M non-zero variables of the sets h and b to another set {Y, Y2, . . . , YM }
of M variables, hkl = hkl(Y, Y2, . . . , YM ) and bkl = bkl(Y, Y2, . . . , YM ). As shown in [2, 5], it
is possible to define Y, Y2, . . . , YM such that the M − 1 variables Y2, . . . , YM remain constant
during the evolution of ρ due to any change in sets h, b. The statistics during the transition
is therefore governed by Y only. The choice of the Y2, . . . , YM depends on the system under
consideration. For a transition preserving the lattice structure, these constants turn out to
be functions of the site indices in the lattice. For example, the variances hkl in the Anderson
ensemble are functions of the disorder as well as the site indices k, l; Y can then be identified as
a function of disorder while Y j ( j > 1) as functions of site indices. Further, as these constants
do not appear explicitly in equation (3), its solution and therefore the ensemble statistics is
independent of the specific values of the constants.

The flow described by equation (3) can start from any initial state; the only constraint on
the choice is that the parameters Y j , j > 2, for the initial ensemble should be same as those for
the ensemble ρ(H, h, b). As shown below by an example, the initial state can also be chosen
as the insulator limit of the disordered system, described by an ensemble of diagonal matrices.
Although this corresponds to the same value for all initial off-diagonal variances (that is, zero),
a choice of different rates of change of hkl with respect to Y can result in different possible
values for each hkl at a later stage.

As an example, consider an Anderson system with a Gaussian site disorder (of variance
W 2/12 and mean zero), the same for each site, and an isotropic Gaussian hopping with a
non-random component (of variance W 2

s /12 and mean ts with s = 1, 2 for real and imaginary
parts respectively) between nearest neighbours (referred to as ensemble G later on). The
corresponding probability density can be described by equation (1) with

hkk = W 2/12, bkk = 0

hkl;s = f1(kl; s) W 2
s /12, bkl;s = f2(kl; s) ts

where f1(kl; s) = 1, f2(kl; s) = 1 for for {k, l} pairs representing hopping, f1(kl; s) → 0
and f2(kl; s) → 0 for all {k, l} values corresponding to disconnected sites. As is obvious,
here the distribution parameters hkl depend on more than one system parameter, namely, the
disorder parameters W , W1 and W2 as well as various functions of site indices. The latter, being
invariant with motion, give the parameters Y2, . . . , YM . The Y for this case can be obtained
by using equation (4),

Y = − N

2Mγ
α + C (5)
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α = ln |1 − γ W 2/12| + (z/2)
∑

s

ln
[|1 − γ W 2

s /6||ts + δts 0|
]

+ C, (6)

with M = β N(N +z(1−δt0)+2−β)/2 ≈ β N2+ε/2. Here z N is the number of connected sites
(nearest neighbours) which depends on the topology and the dimensionality d of the system
and ε is a function of z, ε(z) = (log(N + z(1 − δt0) + 2 − β)/ log N) − 1; ε → 0 for z 
 N .

Now consider an insulator as the initial state (in the same site basis as used for G) with zero
hopping, that is, Ws = 0, ts = 0 and a Gaussian site disorder with variance (W 2/12) = (2γ )−1

(referred to as G0). This corresponds to an ensemble of diagonal matrices with hkk = (2γ )−1,
hkl;s = 0 for k �= l and bkl;s = 0 for all k, l. A substitution of these values in equation (5)
gives the initial value of Y , say Y0, where Y0 = − N

2γ M α0 + C with α0 = − ln 2. Note that the
basis being the same, the parameters Y j (for j � 2) are the same for both G and G0. (The
advantage of choosing the above initial state is explained later.) As is obvious, starting from
G0, a variation of diagonal disorder W , hopping parameters Ws and ts with rates

δhkk

δW
= W/6,

δhkl;s
δWs

= Ws f1(kl; s)/6,
δbkl;s
δts

= ts f2(kl; s) k �= l

can lead to the ensemble G. Using (∂Y j/∂x) = 0 for j � 2 with x ≡ W, Ws , ts , and
equation (5) to obtain (∂Y/∂x), it can be seen that the above rates correspond to

∂hkk

∂Y
∝ |1 − γ W 2/12|,

∂hkl

∂Y
∝ f1|1 − γ W 2

s /6|,
∂bkl

∂Y
∝ f2ts;

(7)

the variances and means of different matrix elements therefore change with different rates with
Y .

The distribution P of the eigenvalues En for a metal (for the energy ranges with fully
extended eigenfunctions) is given by the Wigner–Dyson distribution, P({En}) = ∏

i< j |Ei −
E j |βe− γ

2

∑
k E2

k , and that for an insulator by a Poisson distribution [7]. The distribution for
various transition stages can be obtained by integrating ρ over the associated eigenvector
space. Let P({En}, Y (h, b)) be the joint probability of finding eigenvalues λi of H between
Ei and Ei + dEi (i = 1, 2, . . . , N) at a given h and b; it can then be expressed as
P({En}, Y ) = ∫ ∏N

i=1 δ(Ei − λi )ρ(H, Y ) dH . Using the above definition in equation (3),
it can be shown that the eigenvalues of ρ(H ) undergo a diffusion dynamics along with a finite
drift due to their mutual repulsion (see [2] also),

∂ P

∂Y
=

∑
n

∂

∂ En

[
∂

∂ En
+

∑
m �=n

β

Em − En
+ γ En

]
P. (8)

Again, the steady state of the evolution is given by the limit ∂ P/∂Y → 0; P({En}) in this
limit turns out to be a Wigner–Dyson distribution.

Equation (8) can be used to obtain the correlations between levels. For example, a
knowledge of its solution P gives the static correlations

Rn(E1, E2, . . . , En; Y ) = N!

(N − n)!

∫
P({E j }, Y ) dEn+1 . . . dEN . (9)

P can be obtained by using the analogy of equation (8) with the equation governing the
evolution of the eigenvalues of Brownian ensembles (BEs) of Hermitian type [1, 3]. The latter
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has been studied in great detail in the past and many of its statistical spectral properties are
already known [4]. A brief description of the BE is given in the next section.

It should be noted here that the single-parametric evolution of the matrix elements of the
AE in terms of the complexity parameter Y − Y0 would result in a similar evolution for their
eigenvector components too; this can be shown by integrating equation (3) over all eigenvalues.
However, in this paper we confine ourselves to the discussion of eigenvalue statistics only; the
details for the eigenvector statistics will be published elsewhere.

2. Spectral properties of Brownian ensembles

The stationary random-matrix ensembles were introduced in the past to model quantum
mechanical operators of complex systems in which a certain set of quantities (for example,
total spin, charge or isotopic spin) was exactly conserved; no other integral of the motion
existed even approximately [1, 3]. The total set of the states of the system could then be
divided into subsets, each subset corresponding to a particular set of values for the conserved
quantities. This divides the matrix representation of the operator into various blocks; the
deterministic uncertainty due to complicated nature of the interactions leads to randomization
of the blocks. Due to lack of correlation between energy levels of states belonging to different
subsets, different blocks are uncorrelated. The statistics of the levels within one subset can
then be described by a separate random matrix model which can be of various types based on
the underlying symmetry [1, 3].

The stationary ensembles are inappropriate models for systems possessing approximate
conservation laws. However, such systems occur more frequently in practice, which motivated
Dyson to introduce the Brownian ensembles (BEs) of random matrices [1, 3]. As the latter
have been discussed in detail in the past e.g. in [3, 4] (and references therein), here we give only
a brief review of the BEs related to Hermitian matrices. Consider the Hamiltonian operator
H of a system with its elements given by Hkl at ‘time’ λ and Hkl + δHkl at ‘time’ λ + δλ. A
Brownian motion of H is defined by requiring that each δHkl is a random variable with the
moments 〈δHkl;s 〉 = −γ Hkl;sδλ, 〈(δHkl;s)2〉 = gklδλ [3]. The evolution of the distribution
of matrix elements, from any arbitrary initial state, can then be given by a Fokker–Planck
equation which has the same form as equation (3) with Y ∝ λ2. For λ → ∞, the distribution
approaches steady state which corresponds to one of the stationary ensembles. The crossover
to stationarity is rapid and discontinuous, as a function of λ, for infinite matrix sizes or very
large energy ranges.

A Brownian ensemble can therefore be described as a non-stationary state of the matrix
elements undergoing a crossover due to a random perturbation of a stationary ensemble by
another one. For example, in the case of Hermitian operators, a Brownian ensemble H can
be given as H = √

f (H0 + λV ) (with f = (1 − λ2)−1); here V is a random perturbation
of strength λ, taken from a stationary ensemble, and applied to an initial stationary state H0

(see also [4]). Using second order perturbation theory, it can be shown that the eigenvalues
E j , j = 1, 2, . . . , N of H execute a Brownian motion too, with their evolution described by
an equation the same as equation (8) (with Y ∝ λ2 f ). The eigenvalue statistics (e.g. static
correlations given by equation (9)) of a BE can then be obtained by solving equation (8).
Equation (8) is equivalent, under a Wick rotation, to the Schrödinger equation of the Calogero–
Sutherland Hamiltonian; the equivalence has been used to obtain the eigenvalue correlations
for many BEs [4]. It is shown moreover that the crossover in correlations is governed, for small
λ and large N , by a rescaled parameter � which measures locally the mean-square symmetry
breaking matrix element in units of the mean eigenvalue spacing of H .

The type of BE appearing during the crossover depends on the nature of stationary
ensembles H0, V and their different pairs may give rise to different BEs [4]. The present
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knowledge of ten types of stationary ensembles [3] leads to the possibility of many such
crossovers and, consequently, many types of BEs. For example, the Hamiltonian of a
disordered system or an autonomous chaotic system, with time-reversal symmetry, can usually
be modelled by a Gaussian orthogonal ensemble. The breaking of time-reversal symmetry
e.g. by switching of a magnetic field, with λ as a measure of the breaking, perturbs the
Hamiltonian H0. The statistical behaviour of the system now depends on the energy range
of interest. At asymptotically large energies, the statistics can be modelled by Gaussian
unitary ensembles; however, at intermediate energies with sufficiently small values of λ, an
intermediate statistics (a BE between GOE and GUE) would be obtained, indicative of a non-
equilibrium behaviour. Similarly, if the system is integrable with regular classical motion for
λ = 0 and fully chaotic for λ �= 0, the statistics undergoes the Poisson → GOE crossover
(the BE in this case is a superposition of Poisson and GOE ensembles). For many types of
crossovers, beginning from various stationary states e.g. GOE, GSE, 2GOE, Poisson, uniform
etc and approaching GUE in the limit λ → ∞, the second order correlation functions for all �

have been explicitly evaluated [4]; for the other transitions the correlations are given implicitly
by a hierarchic set of relations [4, 2].

Here we discuss only the BEs appearing during a transition from the Poisson to the Wigner–
Dyson ensemble (referred to as a Wigner–Dyson transition or WDT) caused by a perturbation
of the former by the latter (that is, taking H0, V as the Poisson and the Wigner–Dyson ensemble
respectively). As this transition results in a change of localized eigenstates to delocalized ones,
its relevance for the study of MIT is intuitively suggested. The BEs related to the Poisson →
Wigner–Dyson transition can be described by an N × N ensemble H represented by the
following probability distribution for all (independent) matrix elements:

ρ(H ) ∝ exp

[
−γ

N∑
i=1

H 2
ii − 2γ (1 + µ)

∑
i< j

|Hi j|2
]

(10)

with (1 + µ) = (λ2 f )−1; here H = H0 for λ → 0 or µ → ∞. An ensemble H given by
the above measure is also known as the Rosenzweig–Porter ensemble (RPE); note that it also
corresponds to an ensemble of Anderson Hamiltonians with very long range, isotropic, random
hopping.

Equation (8) describes the evolution of the eigenvalues of a generalized Gaussian
ensemble with a probability density (1) and is therefore applicable for the BEs defined by
a probability density (9) too. A comparison of measure (9) with measure (1), gives a variance
hkl;s = (4γ (1 + µ))−1, hkk;s = (2γ )−1 and mean bkl;s = 0 for all k, l and s indices. Using
these values in equation (4), the parameter Y for the BE case can be given as

Y = − 1

2γ

(N − 1)

(N + 2 − β)
log

(
1 − 1

2(1 + µ)

)
+ Y0

≈ 1

4γµ
+ Y0 (for µ � 1) (11)

with M = β N(N + 2 − β)/2 and Y0 = N
2γ M ln 2 + C as the complexity parameter of the

ensemble H0 (note that Y = Y0 for µ → ∞).
A typical matrix in ensemble (9) has the diagonal elements of order γ −1/2 and off-diagonals

of the order of (γµ)−1/2(=o(Y − Y0)
1/2). The number of off-diagonals being N times more

than the diagonals, the matrix behaviour is governed by the parameter µ. Thus, for large BE
(N → ∞), a radical change from the Wigner–Dyson case can only occur if µ increases more
rapidly than N (which makes the total strength of the off-diagonals weaker than that of the
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diagonals). This results in three different regimes of the mean-level density R1(E) [9]:

R1(E) = N√
π

e−E2
for N(Y − Y0) → 0 (12)

=
√

8Nγ (Y − Y0) − E2

4γπ(Y − Y0)
for N(Y − Y0) → ∞ (13)

= N F(E, a) for N(Y − Y0) = a (14)

with a as an N-independent constant. Although the exact form of the function F(E, a) is not
known, its limiting behaviour can be given as follows: F(E, a) ≈ e−E2

/
√

π for a 
 1 and
F(E, a) ≈ (4πγ a)−1

√
8γ a − E2 for a � 1, E2 
 a [9].

The first order correlation R1, also known as the mean level density, changes from an
exponential to semi-circular form at the scale of (Y − Y0) ∼ N�2

l with �l as the local mean
level spacing; the evolution of R1 can therefore be described in terms of the parameter (Y −Y0).
However, the transition of higher order correlations Rn (n > 1) occurs at a scale determined
by (Y − Y0) ∼ �2

l [4, 9]. As a result, their transition to equilibrium, with |Y − Y0| as the
evolution parameter, is rapid and discontinuous for infinite dimensions of matrices [1]. But for
small Y and large N , a smooth crossover can be seen in terms of a rescaled parameter �(E):

�(E, Y ) = |Y − Y0|/�2
l . (15)

For finite N , � varies smoothly with changing µ: � = R2
1/4γµ. This results in a continuous

family of BEs, parametrized by �, existing between the Poisson and the Wigner–Dyson limit.
However, the level statistics for the large BE (N → ∞) can be divided into three regions [9].

(i) Poisson regime: N2(Y − Y0) → 0. The off-diagonals, responsible for the correlation
between levels, are negligible. The lack of repulsion between levels results in a mean
level spacing �l ∝ N−1 (see equation (12)), thereby giving � → 0 and the Poisson
statistics.

(ii) WD regime: N2(Y − Y0) → ∞. The contribution from both the diagonals as well as
off-diagonals is of the same order, leading to long range correlations between levels. The
repulsion of levels now results in a mean level spacing �l ∝ N−1/2 (see equation (13))
which gives � → ∞ and Wigner–Dyson statistics.

(iii) Critical regime: N2(Y − Y0) = (4γ c)−1 = a constant. For µ = cN2 with c as a constant
independent of N , a sequence of approximately o(1/

√
c) levels show Wigner–Dyson

behaviour. The more distant levels display weak correlations of the type existing near the
Poisson limit resulting in a �l ≈ o(1/N). The parameter � is therefore N independent:

�(E) = (1/4cπγ )e−E2; (16)

note it is also independent of the symmetry parameter β.
The finite, non-zero � value for µ = cN2 in the limit N → ∞ therefore gives rise to a

third statistics, intermediate between the Poisson and the Wigner–Dyson ensemble, which is
known as the critical Brownian ensemble (CBE). This being the case for arbitrary values of
c (non-zero and finite), an infinite family of critical BEs, characterized by c (or µc = cN2),
occurs during WDT. Note that the critical BEs, with c → ∞ and c → 0, correspond to the
Poisson and the Wigner–Dyson limit, respectively.

The presence of a family of the critical BEs can be seen from any of the fluctuation
measures for WDT. One traditionally used measure in this regard is the relative behaviour
of the tail of the nearest neighbour spacing distribution P(s,�), defined as α(δ,�) =∫ δ

0 (P(s,�) − Pw(s)) ds/
∫ δ

0 (Pp(s) − Pw(s)) ds with δ as any one of the crossing points of
Pw(s) and Pp(s) (here subscripts w and p refer to the Wigner–Dyson case and the Poisson
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case respectively) [10]. In the limit N → ∞, α = 0 and 1 for the Wigner–Dyson and the
Poisson limit respectively. The figure 1 shows the numerically obtained behaviour of α (for
δ ≈ 2.02) with respect to |z − c| (=|µ − µc|N−2) for a fixed c (arbitrarily chosen) with z as
a variable; here z and c are the values of the parameter µN−2 for a general BE and a critical
BE respectively. The constant value of α at |z − c| = 0 for different N values confirms the
size independence of the level statistics of BE with parameter µ = cN2 and therefore its
critical nature; we have verified it for other c values too and find, for finite, non-zero c values,
0 < α < 1. Further, the convergence of α values for BEs with different µ- and N values on
two branches indicates the presence of a scaling behaviour in the level statistics of BEs with
|z − c| (=|µ − µc|N−2) as the scaling parameter.

As shown in figure 1(a), α for a critical BE is between zero and unity. A fractional value
of α indicates a tail behaviour of the critical BE different from that of the Poisson as well
as the Wigner–Dyson limit. As shown in figure 1(b), the P(s) for a critical BE with a finite
parameter c has an exponential tail, P(large s) ∼ exp(−κs); this behaviour of P(s) is also
sometimes referred to as a semi-Poisson distribution, due to the presence of repulsion at small
energy scales and exponential decay at large separations.

3. Analogy between Brownian ensembles and Anderson ensembles

The same evolution equations of P for AEs and BEs imply a similarity in their eigenvalue
distributions for all Y values, under similar initial conditions (that is, P(µ, Y0) the same for
both cases). As a result, one obtains the analogous evolution equations for their correlations
Rn too. The mean level density R1(E, Y − Y0) of an AE can therefore be given by the level
density of a BE with the same |Y −Y0| value (and appearing during a Poisson to Wigner–Dyson
transition). Similarly, the analogy of evolutions of Rn (n > 1) in the two cases implies

(i) a smooth crossover of Rn for finite size Anderson systems in arbitrary dimensions,
(ii) the parameter � governing the smooth crossover of Rn for finite size AEs can again be

defined by equation (15), with Y −Y0 given by equation (4) and �l as the local mean level
spacing for the AEs,1

(iii) the correlations Rn , n > 1, of an AE can be given by those for a BE with the same �

value although their parameters Y (as well as level densities) may be different,
(iv) the discontinuity of the transition of Rn for infinite size of the Anderson matrix,
(v) the existence of a size-invariant level statistics, different from the two end-points, if an AE

has � = size independent; the statistics survives the thermodynamic limit L → ∞. As
explained later by an example, the above condition on � is satisfied at the critical point
of d > 2-dimensional Anderson systems; the corresponding level statistics is referred to
as critical.

Implications (i) and (iv) are in good agreement with known results about AE
correlations [11]. Implications (ii), (iii) and (v) indicate the single-parametric dependence
of the level statistics for AEs. The parameter � for the AE and BE will henceforth be referred
to as �a and �b, respectively. The level statistics of a finite-size AE at �a is then given by a
BE with its parameter µ satisfying the condition

�a = �b (17)

1 The higher order correlations basically being the measures of the fluctuations of the density around its average
value, their comparison in two different spectra makes sense only if the fluctuations are measured with respect to the
same background. This requires an unfolding of each spectrum, that is, rescaling by its mean level density before
comparison with another spectrum [4]. As the parameter governing the evolution in the rescaled spectrum is �, the
higher order correlations of an AE are given by a BE with the same � value.
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Figure 1. The study of critical BEs: (a) the scaling behaviour of the integrated nearest neighbour
spacing distribution α during WDT. Note that α values for BEs with different parameters µ and sizes
N converge on the same two curves, thus indicating the α dependence on a specific combination of
µ and N , namely, z = µ/N2. Further, at z = c, α remains unchanged for different N values, thus
indicating a critical point of BEs. (b) The comparison of the tail of the P(S) distribution for two of
the critical BEs with function e−κs for the β = 2 case. For intermediate c-ranges, the P(s) is well
fitted by the function e−κs . The fitting, however, seems to be poor for smaller c values which is as

expected, due to the statistics approaching the GUE limit (which corresponds to P(s) ∼ e−πs2/4).
The fitted κ values are as follows: (i) κ = 0.8 for c = 0.3, (ii) κ = 1.7 for c = 0.03. The above κ

values seem to deviate significantly from the relation κ = (π/4γ c) (obtained by using κ = (2χ)−1

with χ given by equation (35) and γ = 2). We have seen a similar deviation for the BEs with
β = 1 too. This suggests the non-validity of relation κ = (2χ)−1 in general although it seems to
work for some c values (see for example figure 3).
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where �b = R2
1/4γµ with R1 as the level density of the BE; the determination of �a is

explained later by using an example. As the BEs with different combinations of the parameters
µ and N can have the same �b, the correlations of a finite size AE can be mapped to many
BEs. However, the critical BE corresponding to a critical AE is unique; this can be understood
as follows. Using equations (16) in (17), the parameter c for a critical BE corresponding to an
AE can be given by

c = (4πγ�a)
−1e−E2

. (18)

The �a for a critical AE being size independent, its critical BE analogue remains the same for
all system sizes. However, the �a for an AE, away from its critical point, is size dependent and
therefore corresponds to different c values (that is, different critical BEs) for different system
sizes.

The �a for a disordered system can be determined by a knowledge of Y − Y0 and �l. The
complexity parameter Y − Y0 is system specific and depends on various system parameters.
For a d-dimensional disordered system of linear size L, the local mean level spacing �l

within a correlation volume of linear dimension ζ is related to the mean level density R1:
�l = (L/ζ )d R−1

1 where ζ is the localization length or correlation length in the case of localized
states and extended states, respectively2 [11]. The ζ can be determined by a knowledge of the
wavefunction correlations, e.g. inverse participation ratio I2 [15]: ζ d ∝ (I2)

−1 for localized
eigenstates [15]. As mentioned in the last paragraph of section 1, the wavefunction statistics,
and therefore ζ , can also be described, in principle, by a complexity parameter formulation.
However, the related work being still in progress, we use, in this paper, the ζ results given by
previous studies.

Let us consider the example G given in section 2; its parameter Y is given by equation (5).
The initial state G0 has parameter Y0 the same as that of the initial state chosen in the BE case
in section 2. Note that as N |Y − Y0| → an N-independent function for the case G, its R1 is
given by equation (14) with R1 = N F . Using equations (5) in (15), � for the case G can be
given as

�a(E, Y ) =
( |α − α0|F2

βγ

)
ζ 2d L−d (19)

with F(E) giving the energy dependence of � (as |ε| ≈ 0 for large N). Following
equation (17), the level statistics at �a → 0,∞ corresponds to Poisson (or insulator limit) and
Wigner–Dyson behaviour (metallic limit), respectively. In finite systems, a change of disorder
results in a smooth variation of ζ as well as α−α0 and, therefore, �a which induces a crossover
of the level statistics from the Poisson to the Wigner–Dyson ensemble. The intermediate level
statistics at each �a of a finite size AE is then given by an N1 × N1 BE with its parameter µ

satisfying the relation �a = �b:

µ ≈ β(4π |α − α0|F2)−1ζ−2d Ld R2
1 (20)

with R1 ≡ R1(E; µ, N1) as the level density of the BE. As is obvious, the determination of µ

from the above equation is not easy, both sides being µ dependent. The R1 for the critical BEs
being µ independent (given by equation (12)), it is preferable to map an AE to a critical BE;
the substitution of equation (19) in (18) gives the c parameter for the corresponding critical
BE:

c ≈ β(4π |α − α0|F2eE2
)−1ζ−2d Ld . (21)

2 For a d-dimensional disordered system, the number of states in a volume of linear dimension ζ in d dimensions is
n(0)ζ d , with n(0) as the density of states at the Fermi level and ζ as the localization length. Consequently, the typical
energy separation between such states is �l(E, Y ) = (n(0)ζ d)−1. Similarly, the mean level spacing of states in the
full length of the spectrum is �(E, Y ) = (n(0)Ld )−1, which gives R1 = �−1 = n(0)Ld . For disordered systems,
�l can therefore be expressed in terms of the mean level density R1: �l = (L/ζ )d R−1

1 .
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Thus each state of disorder in an AE of size L (N = Ld) can be mapped to a critical BE with
the parameter c given by equation (21). Note that, the right side of equation (21) being energy
dependent, different energy ranges of a given AE will, in general, correspond to different
critical BEs.

Equation (19) indicates the sensitivity of the parameter �a to localization length ζ and
system size L. It is now well known that ζ is a function of disorder strength, energy and
system size L as well as the dimensionality of the system. For systems with finite L (in
arbitrary dimensions d � 1), ζ , at a fixed energy, decreases with increasing disorder strength.
Consequently, in the strong disorder limit (where ζ ∼ o(L0)), �a → 0 and the level statistics
of the AE approaches Poisson behaviour (as �b → 0 for its BE analogue). In the opposite limit
ζ ∼ o(L) of weak disorder, �a → ∞ and, therefore, the statistics of the AE is given by a BE
at �b → ∞ which corresponds to Wigner–Dyson behaviour. By a suitable choice of disorder,
however, it is possible to achieve finite values of the ratio ζ 2/L (due to finite L) in arbitrary
dimensions which in turn gives finite, non-zero �a and, thus, a finite c for its BE analogue. The
latter implies that the AE statistics is intermediate between the Poisson and the Wigner–Dyson
limit, with an exponential decay of the tail of its nearest neighbour spacing distribution P(s).
For finite L, therefore, a smooth crossover from Poisson to Wigner–Dyson statistics can be
seen, for any dimensionality d � 1, as a function of �a by varying the disorder strength.
Note that two finite size AEs of different dimensions can show the same level statistics if their
parameters �a are equal. For example, consider the behaviour of levels of a one-dimensional
AE of size L and at a disorder strength which gives Y = Y1. The behaviour will be the
same as that of a three-dimensional AE of linear size L, at a disorder strength which gives
Y = Y3 where Y3 = Y1(ζ1 R(1)

1 /ζ3 R(3)

1 )2; here R(d)

1 and ζd refer to the mean level density and
localization length in dimension d , respectively.

The dimensionality dependence of the Anderson transition and the critical level statistics
is well known. For example, the level statistics at the critical disorder for d > 2-dimensional,
finite systems shows a ‘semi-Poisson’ behaviour which survives the infinite size limit. The
same behaviour is seen for d � 2-dimensional finite systems, in a regime where ζ ∼ L;
however, the statistics approaches a Poisson behaviour in the thermodynamic limit. The
above behaviour can be explained within the ‘� formulation’. As mentioned in section 2, a
‘semi-Poisson’ behaviour of the level statistics is a characteristic of critical BEs with finite
c parameters and therefore of the AEs with finite �a parameters (see equation (19)). The
AE statistics is expected to maintain its semi-Poisson behaviour even in the thermodynamic
limit if �a = size independent. In this sense, �a can be identified with the dimensionless
conductance g: both g,�a → 0,∞, constant correspond to the same statistical limit, namely,
Poisson, Wigner–Dyson and a critical level statistics, respectively. In fact, �a can be expressed
in terms of the dimensionless conductance g of the system. This is because g is connected
to ζ (based on scaling theory of localization for disordered systems [12]): ζ ∝ L log g−1 for
exponentially localized states, ζ ∝ |(g/gc) − 1|−ν near the critical point and ζ ∼ o(L) with
g ∝ Ld−2. For example, using equation (19), the �a–g relation for case G near the critical
point can be given as

�a(E, Y ) =
( |α − α0|F2ζ 2d

0

βγ

)
|(g/gc) − 1|−2νd L−d (22)

with gc as the critical point conductance and ν as the critical exponent.
As indicated by equation (19), the size independence of �a is governed by the size

dependence of the localization length. For example, for a d-dimensional disordered system,
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with |Y − Y0| � o(Lx1d), the level density is R1(Y − Y0) � o(Lx2d) where

x2 =
{

1 for x1 � −1,

(1 − x1)/2 for x1 � −1.
(23)

Thus the critical point of the level statistics (that is, � = size independent) can exist only
if, in the thermodynamic limit, the disorder conditions in the system give rise to a localization
length ζ ∼ o(Lx3) where x3 ≈ (2 − x1 − 2x2)/2 or, equivalently,

x3 =
{

|x1|/2 for x1 � −1

1/2 for x1 > −1.
(24)

The existence or non-existence of a critical level statistics in an AE therefore depends on the
size dependence of ζ , which in turn is sensitive to the dimensionality of the system [12]:

Case d � 2. For a d = 1 disordered lattice, almost all states are known to be exponentially
localized even in the weak disorder limit. ζ in this case is finite, ζ ≈ πl ∼ o(L0) [12] (with l
as the mean free path), which gives x3 = 0. As is obvious, condition (21) cannot be satisfied
for any x1, equivalently, for any Y − Y0 (e.g. for any disorder conditions). As a consequence,
a critical level statistics cannot occur in the one-dimensional case.

Equation (16) suggests that a ‘semi-Poisson’ type statistics can be seen in the d = 1 case
for L of the order of a few mean free paths (i.e. for finite l2/L). In the limit L → ∞, however,
�a → 0 and the level statistics approaches Poisson behaviour irrespective of the disorder
strength.

In two dimensions, the perturbative estimate of the localization length is ζ ≈ l exp[πkFl/2]
with kF as the Fermi wavenumber [12] and, in the limit L → ∞, electronic states are expected
to be localized even for small microscopic disorder [13]. This again corresponds to x3 = 0 (thus
absence of critical level statistics), and the Poisson statistics for the levels in the thermodynamic
limit (as �a → 0). Note, however, that due to the exponential nature of ζ the ratio ζ 2/L can
be kept non-zero and finite (by changing disorder) for a large range of L. The system can
therefore show the semi-Poisson statistics in a large range of system sizes.

Case d > 2. For d > 2-dimensional, infinite systems, the change of disorder W leads
to a discontinuous change in ζ and thereby �a : ζ ∝ |1 − (W/Wc)|−ν . Here ν is the critical
exponent and Wc is the critical disorder. For W > Wc, almost all states are exponentially
localized with ζ ∼ o(L0) which results in �a → 0 and Poisson behaviour of the statistics.
For W < Wc, the delocalization of states occurs with ζ → o(L); this gives �a → ∞ and the
Wigner–Dyson statistics. At Wc, however, the inverse participation ratio I2 for the d > 2 case
shows an anomalous scaling with L [14]: I2 ∝ L−D2 with D2 as the multifractality exponent.
This gives ζ d ∝ 〈I2〉−1 = ζ d

0 L D̃2 or x3 = D̃2/d with ζ0 as a size-independent function; note
that D̃2 = D2 at the critical point [16, 17]. The size independence of the level statistics at the
critical disorder therefore requires

D2 =
{

d|x1|/2 for x1 � −1

d/2 for x1 > −1.
(25)

For example, as x1 ≈ −1 in case G, the existence of its critical point requires D2 ≈ d/2. Note
that the numerical results for D2, at the critical point of a d = 3 dimensional AE system (of
type G) fluctuate in the range 1.4–1.6 [18, 20–22] (also see [77, 79] in [21]); this is in close
agreement with the result given by equation (25) for the d = 3 case. The above prediction for
D2 can be used to determine the critical BE analogue for the critical state of the AE example
G for the d > 2 case:

c ≈ (4π |α − α0|ζ 2d
0 F2eE2

)−1β (26)
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(as ε ≈ 0). Thus, unlike the d = 1 case showing only Poisson level statistics in the
thermodynamic limit, the energy levels of an infinite size AE for the d > 2 case can show
three types of behaviour, namely, Poisson, Wigner–Dyson and a critical BE type statistics, at
the disorder strength above, below and at the critical disorder, respectively.

The study [20] suggests a connection between D2 and the level compressibility χ :

D2 = d(1 − 2χ). (27)

A comparison of equation (25) with (27) gives χ for a d > 2-dimensional AE at the critical
point: χ ≈ 0.25. (Note that the above χ-result is valid only for the cases of type G with
ζ ∝ L D2/d .) The tail of the distribution P(s) is also believed to be related to D2 [24]:
P(large s) ≈ e−κs where κ = (2χ)−1 ≈ 2. The results for χ and κ are in close
agreement with earlier numerical studies on Anderson systems [18, 20–23]; our numerical
study, given in section 5, also confirms the above results. The symmetry independence of our
theoretical prediction for χ and κ for Anderson systems is also in agreement with numerical
observations [23, 22]. As discussed later, however, equation (27) (and therefore the above χ, κ

results) seems to be valid only in the weak multifractality limit, i.e. D2 ∼ d (see the paragraph
below equation (36)).

For disordered systems, in general, both Y − Y0 and ζ are functions of coordination
number, disorder strength, hopping rate and dimensionality as well as boundary conditions
of the lattice. The changing complexity due to change of the system parameters plays the
role of a random perturbation, of strength

√
Y − Y0, applied to the system. Here, again, the

statistics of the levels is governed by � and, therefore, by the competition between local
mean-level spacing �l and the perturbation strength Y − Y0. The perturbation mixes fewer
levels with increasing system size if �l increases with L at a rate faster then that of

√
Y − Y0

and, as a consequence, leaves the level statistics unperturbed in the limit L → ∞. In the
opposite case with slower rate of change of �l with L (as compared to

√
Y − Y0), even a

small change in the complexity parameter is capable of mixing the levels in an increasingly
large energy range of many local mean level spacings. This results in an increasing degree of
eigenfunction delocalization and Wigner–Dyson behaviour of level statistics in thermodynamic
limit. The critical regime occurs when both

√
Y − Y0 and �l change at the same rate with

L; the perturbation in this case mixes only a finite (non-zero), fixed number of levels even
when the system is growing in size. As � remains finite in the limit L → ∞, it gives rise to
a new statistics different from the two end-points (� → 0 and ∞). Note that the disordered
systems with different dimensionalities can have different critical values of � (due to the
dimensionality dependence of �l as well as |Y − Y0|) and, therefore, correspond to critical
BE analogues with different c values. Further, the boundary conditions/topologies, leading to
different sparsity and coordination numbers, can also result in different critical level statistics
even if the underlying symmetry and the dimensionality is the same; this is in agreement with
numerical observations [18] and analytical study for 2D systems [19]. A knowledge of � can
then be used to map the critical level statistics at the MIT for various dimensions d > 2 → ∞
to the infinite family of critical BEs.

4. Determination of fluctuation measures for MIT

Many results for the spectral fluctuations of the WDT with the Poisson ensemble as an initial
state are already known [4] and can be directly used for the corresponding measures for the
MIT in different disordered systems.
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4.1. MIT with no time-reversal symmetry

The fluctuation measures, for the Anderson transition in the presence of a magnetic field, can
be given by the BEs appearing during a WDT which violates time-reversal symmetry. Such
a WDT, occurring in a complex Hermitian matrix space (that is β = 2), corresponds to a
transition from Poisson to GUE ensembles.

4.1.1. The two-level density correlator R2(r; �). The R2 for BEs during Poisson → GUE
transition has been obtained by various studies [4, 25, 26]. Here we use the form given in [25]
for the purposes to be explained later (note that our � is equivalent to �2/2 used in [25]),

R2(r; �) = 1 +
4�

r

∫ ∞

0
du Fe−2�u2−4π�u (28)

with

F = sin(ur) f1 − cos(ur) f2

f1 = (2/z)
[
I1(z) − √

8u/π I2(z)
]

f2 = (1/u)
[
I2(z) − √

2u/π I3(z)
] (29)

where z = √
32π�2u3 and In as the nth Bessel function. (Note that equation (4.15) in [25] has

a misprint in the coefficient of u in the exponent; the correct coefficient is given in equation (28)
above.)

Equation (28) gives the exact form of two-point correlation for the Anderson transition
with no time-reversal symmetry. Here R2(r,∞) = 1 − (sin2(πr)/π2r2) and R2(r, 0) = 1
corresponding to the metal and insulator regimes respectively. A substitution of the critical
value of �a in equation (28) will thus give R2 for the critical AE.

For large � values (for all r ), R2 can be approximated as follows [25, 26]: R2 = 1 − Y2

where

Y2(r,�) = −4�

16π2�2 + r2
− 1

2π2r2
[cos(2πr)e− r2

2� − 1]

≈ 3

2π2�

sin2(πr)

sinh2(r
√

3/2�)
(for r 
 √

�). (30)

However, for r >
√

�, Y2(r,�) = − 4�
16π2�2+r2 + 1

2π2r2 . As � = (4cπγ )−1 (near E = 0) for a
critical BE, Y2 ≈ (1 − 8π2�)/2π2r2 for r > 2βπ� (here β = 2).

The above large r behaviour of Y2(r; �) at � = �b results in a non-zero, fractional value
of the sum I = ∫ ∞

−∞ Y2(r; �)dr for a critical BE of complex-Hermitian type:

I ≈ 1 − (βπ2�)−1. (31)

Note that a 0 < I < 1 value is believed to be an indicator of the multifractality of the
wavefunctions and the fractional compressibility of the spectrum (I = 1, 0 for the WD and
Poisson cases, respectively) [20, 27]. A fractional behaviour of I and the multifractality is
already known to exist in critical AE [20, 27]. Using �a = �b in equation (31), one can now
determine the measure I for an AE: I ≈ 1 − (βπ2�a)

−1.

4.1.2. Nearest neighbour spacing distribution P(S). The nearest neighbour spacing
distribution P(s) for the MIT with no time-reversal symmetry can similarly be given by using
the one for the BE during the Poisson → GUE transition [28, 29]:

P(s; �) ∝ s√
2π�

e−s2/8�

∫ ∞

0
dx e−x−x2 /8� sinh(xs/4�)

x
. (32)
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A substitution of � → ∞ and � → 0 in the above equation gives the correct asymptotic limits,
namely, Wigner–Dyson and Poisson, respectively: P(s; ∞) = Pw(s) = 32s2e−4s2/π/π2 (WD
limit) and P(s; 0) = Pp(s) ∝ e−s (Poisson limit). (Although this result is rigorous for a 2 × 2
matrix space it is proved reliable for systems with many levels; see [29].)

4.1.3. Level compressibility. The level compressibility χ = 1 − ∫ ∞
∞ Y2(r) dr = 1 − I

is an important characteristic of the critical level statistics and the multifractal nature of the
wavefunctions.

χ for a BE can be obtained by using equation (28),

χ(�) = 1 − 4π�

∫ ∞

0
du f1(z) exp[−2�u2 − 4π�u] (33)

≈ 1 − 4π2� for small � (34)

≈ (2π2�)−1 for large �. (35)

The substitution of equation (16) for �b in equations (29) and (30) gives, in the band around
E = 0, χ = 1 − (π/γ c) and χ ≈ (4γ c/2π), in small and large � limits, respectively. Thus a
critical BE characterized by a finite c value shows a fractional level compressibility. As is clear
from the above, χ → 1 for � → 0 (or c → ∞) which corresponds to a Poisson behaviour,
and χ → 0 for c → 0 or � → ∞ which corresponds to the GUE statistics.

The compressibility of the energy levels of Anderson systems at their critical point is
already known to be fractional, with χ = 0, 1 in the metallic and the insulator phase,
respectively. The existence of a fractional χ for both critical BE and critical AE is consistent
with our claim about their spectral analogy. The compressibility of the AE with different types
of disorders and lattices can now be obtained just by finding the same for their critical BE
analogues.

For the critical BE case (d = 1) with large �b (equivalently, small c), equation (27) along
with equation (35) gives

D2 = 1 − 4γ c/π for small c. (36)

Equation (36) gives the correct fractal dimension in the limit c → 0 (the Wigner–Dyson limit):
D2(c = 0) = 1. However, for small �b (or large c), equation (27) implies D2 = 2π/γ c − 1
and therefore D2 = −1 in the Poisson limit c → ∞, which is different from the expected
result D2 = 0 for the localized states. As mentioned in [16], similar violation of equation (27)
is indicated by numerical data for the tight-binding models in dimensions d > 4. The observed
inaccuracy of equation (27), for both AE and BE in the strong multifractality limit, also lends
credence to our claim regarding AE–BE analogy.

It is worth mentioning here that, similar to the AE–BE mapping, the spectral statistics of
any generalized Gaussian ensemble, with probability density given by (1), can be mapped
to BEs [2]. The non-validity of equation (27) for critical BEs with small c parameters
implies, therefore, the same violation for all generalized Gaussian ensembles in the strong
multifractality limit. The implication is already known to be correct for the power law random
banded matrices [16, 17, 33] (also see section 6) and for the random matrix ensemble introduced
by Moshe, Neuberger and Shapiro (later referred to as the MNS model) [32].

4.2. MIT with time-reversal symmetry

The statistical measures for the Anderson transition in the presence of a time-reversal symmetry
can similarly be obtained by using their equivalence to a WDT preserving the same symmetry,
that is, a transition from Poisson to GOE ensembles; the latter occurs in a real-symmetric matrix
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space (here β = 1). However, due to the technical difficulties [4], only some approximate
results are known for the latter case.

4.2.1. The two-level density correlator R2(r; �). The R2 for small r can be obtained by
solving equation (17) of [2] for β = 1 which gives

R2(r,�) ≈ (π/8�)1/2re−r2/16� I0(r
2/16�) (37)

with I0 as the Bessel function.
Similarly, for large-r behaviour, R2 can be shown to satisfy the relation (see equation (23)

of [4])

R2(r,�) ≈ R2(r,∞) + 2β�

∫ ∞

−∞
ds

R2(r − s; 0) − R2(r − s; ∞)

(s2 + 4π2β2�2)
(38)

≈ R2(r,∞) + 2β�/(r 2 + 4π2β2�2) (39)

where β = 1 and R2(r,∞) = 1− sin2(πr)/π2r2 − (∫ ∞
r dx sin πx/πx

) (
d
dr sinπr/πr

)
(GOE

limit).
As can be seen from the above, Y2(r,�) ≈ − 2�

4π2�2+r2 + 1
2π2r2 for r >

√
�. However,

note that, for r > 2π�, the behaviour of Y2 is different from that of a BE with no
TRS: Y2 ≈ (1 − 4βπ2�)/2π2r2. This further suggests the following behaviour of I :
I = 1 − (βπ2�)−1. The I for a critical BE is therefore symmetry dependent (as � = �b

does not depend on β). However, the I for its AE analogue is independent of the symmetry
parameter β; this is because � = �a ∝ β−1 in this case (see equation (19)).

4.2.2. Nearest neighbour spacing distribution P(S). P(s) for this case can be given by using
the one for a BE during the Poisson → GOE transition [28]:

P(s,�) = (π/8�)1/2se−s2/16� I0(s
2/16�) (40)

with I0 as the Bessel function; note that, as expected, this is the same as the R2 behaviour for
small r (equation (37)).

4.2.3. Level compressibility. The lack of the knowledge of R2(r,�) for the entire energy
range handicaps us in providing an exact form of the compressibility for the time-reversal case.
However, its approximate behaviour can be obtained by using the relation χ = 1 − I . Thus,
for a time-reversal critical BE (β = 1),

χ ≈ (π2�)−1 (41)

and therefore χ ≈ (π2�a)
−1 for its AE analogue.

Equations (35), (41) indicate the influence of underlying symmetry on the compressibility
of the levels: χ ≈ (βπ2�)−1. Note that χ for a BE is symmetry dependent due to � = �b

being β independent (see equation (16)). However, as � = �a ∝ β−1 for an AE (see
equation (19)), its χ would be symmetry independent; this is in agreement with numerical
observations for Anderson systems [23, 22, 34]. This further implies that the critical BEs
corresponding to critical AEs with and without time-reversal symmetry would be different.

In the past, an attempt to explain the symmetry independence of the level statistics at
the Anderson transition was made in the study [34] by suggesting a scaling behaviour of the
distribution P(s) with the conductance g and the symmetry parameter β. The P(s) in the
study [34] was obtained by interpolation between metallic and insulator limits. We note that,
by using the �–g connection (equation (22)), the P(s) given by equations (32) and (40) can
also be expressed as a function of g.
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5. Numerical comparison of the level statistics of critical AE and critical BE

In this section, we investigate the AE–BE spectral analogy by numerically comparing two of
their fluctuation measures, namely, P(s) and the number variance �2(r) = 〈(r − 〈r〉)2〉. The
former is a measure of the short range correlations in the spectrum and the latter, describing
the variance in the number of levels in an interval of r mean level spacings, contains the
information about the long range correlations [3]. �2 is also an indicator of the compressibility
of the spectrum; lim r → ∞ �2(r) ≈ χr . To study the AE–BE analogy in the presence of
time-reversal symmetry as well as its absence, we consider two cases of the three-dimensional
AE (simple cubic lattice of size L = 13 and with Gaussian site disorder) in the critical regime.

(i) AEt . The AE with isotropic random hopping, hard wall boundary conditions and time-
reversal symmetry; here W = 4.05, W1 = 1, W2 = 0, t1 = 0, t2 = 0. The criticality of the AE
for the same disorder parameter values but with periodic boundary conditions is numerically
studied in [30]. However, the system remains in the critical regime under hard wall boundary
conditions too.

(ii) AEnt . The system G with isotropic non-random hopping, periodic boundary
conditions and no time-reversal symmetry; here W = 21.3, W1 = 0, W2 = 0, t1 = 1, t2 = 1.
The time-reversal symmetry is broken by applying an Aharonov–Bohm flux φ which gives rise
to a nearest neighbourhopping Hkl = exp(iφ) for all k, l values related to the nearest neighbour
pairs [22]. The flux φ is chosen to be non-random in nature, that is, 〈cos2(φ)〉 = W1 = 0,
〈sin2(φ)〉 = W2 = 0 and 〈cos(φ)〉 = t1 = 1, 〈sin(φ)〉 = t2 = 1.

We study each AE case for two system sizes L = 10 and 13 by numerically diagonalizing
the matrices of the ensembles by standard techniques. Each ensemble contains a few thousand
matrices and the statistical average is performed approximately over 3 × 105 levels, obtained
by taking 200 levels in a small energy range around the centre E = 0 of the spectrum of each
matrix. Each BE (chosen with γ = 2) is also analysed for two dimensions N = 1000 and
3000. Note that due to a higher rate of change of the mean level density, the � (equation (16))
for BEs changes more rapidly with energy as compared to AE cases (equation (19)). To avoid
mixing of levels with different transition rates, therefore, fewer (≈100) levels are taken from
the spectrum of a matrix in the BE case; the total number of levels for BE analysis is kept
nearly the same (as in the AE cases) by taking a bigger ensemble. Each spectrum is unfolded
for P(s) and �2(r)-analysis. The unfolding is carried out by numerically calculating the
unfolded levels r j = ∫ E j

−∞ dx R1(x) for ( j = 1, 2, . . . , N) with symbol E j used for levels
before unfolding.

The parameter Y − Y0 for both AE cases is given by equation (5). As N |Y − Y0| � o(1),
the mean level density R1 for both AE cases is given by equation (14); R1 = N F with F as
an N-independent function of energy. This is confirmed by our numerical analysis of R1 for
different N values for each AE case, with figure 2(a) showing the comparison for only two N
values. (Note that for R1 study the spectrum is not unfolded and almost all the eigenvalues of
each matrix are used for the analysis.) As mentioned in section 3, the critical BE analogues
for the fluctuation measures need not have the same R1. The R1 behaviour for the critical BE
analogues for the fluctuations of the AE cases is shown in figure 2(b); the numerical fitting
confirms that R1 = (N/

√
π)e−E2

for each critical BE case which is quite different from their
AE analogues.

Figures 3 and 4 show the P(S) and �2(r)/r behaviour for the two AE cases. The almost
the same behaviour for two system sizes in each AE case, for both the measures, confirms their
critical nature. We find, from figure 4, that the large r behaviour of �2(r)/r for both AEs
seems to converge to χ ≈ 0.25 which confirms our analytical prediction of χ for AEs (with
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Figure 2. The behaviour of level density F(E) = N−1 · R1. (a) For the two cases for two

system sizes L = 10 and 13. The numerical fitted function has the form F = f1e−(E2/ f2 ) with
f1 = 0.16, f2 = 5 for AEt and f1 = 0.016, f2 = 400 for AEnt . (b) For the critical BE analogues
of the higher order correlations of the two cases considered in (a). Here F for all the critical BE

cases is well fitted by the function F(E) = π−1/2e−E2
. Note the lack of analogy between the

mean level densities for the cases given in (a) and (b) while their higher order correlations (shown
in figures 3, 4) are approximately the same.

ζ ∼ o(L D2/d), based on equality of equations (25) and (27)); it is also in agreement with other
numerical studies [18, 20–22].

The determination of the critical BE analogue of the fluctuation measures of an AE requires
a prior information about �a (given by equation (19)). Although we know the function F for
each AE case (see figure 2(a)) as well as α−α0 (from equation (6), α−α0 = 1.36, 5.43 for AEt
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Figure 3. The comparison of distribution P(S) of the nearest neighbour spacings S for the AE
(d = 3) and BE cases on a log–log scale. To confirm the critical state of the AE, the distribution is
shown for two system sizes L for each AE case. The insets show the same functions on a lin–log
scale and also compare the behaviour with e−κs . (a) AEt (with hard wall boundary conditions,
random hopping and time-reversal symmetry) and its critical BE analogue (c = 0.1). The dashed
line in the inset is the fitted function f = 4e−1.7S which gives κ ≈ 1.7. (b) AEnt (with periodic
boundary conditions, non-random hopping and no time-reversal symmetry) along with its critical
BE analogue c = 0.2. The dashed line in the inset is the fitted function f = 2e−1.5S which gives
κ ≈ 1.5.

and AEnt , respectively), the determination of ζ requires an statistical analysis of wavefunctions.
Fortunately, equations (35) and (41) suggest that the parameter c of the critical BE analogue
of a critical AE can also be obtained (approximately) from its χ behaviour: c ≈ (βπχ/4γ ).
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Figure 4. The comparison of the �2(r)/r behaviour for the AE and BE cases. (a) AEt and
the corresponding critical BE analogue (c = 0.1). (b) AEnt and the corresponding critical
BE (c = 0.2). Note here the critical BE analogue for each AE case is same as for the
P(S) study. As can be seen, �2/r for large r seems to approach the limit suggested by the
relation χ = limr→∞ �2/r = (4γ c/βπ), that is, χ = 0.25. Note that this is the expected χ for
AEs on the basis of equations (25) and (27) too. Besides showing AE–BE analogy, the figure also
confirms (i) the symmetry independence of χ for AEs and (ii) the fractional χ result for a critical
BE.

Using χ ≈ 0.25, the theoretically expected c parameters for AEt and AEnt are 0.1 and 0.2,
respectively. Figures 3 and 4 confirm the existence of the critical BE analogues, of the AE
cases, at the above c values. Note that the above relation between the parameter c of a critical
BE and χ of a critical AE is obtained by combining the theoretical results for (i) critical point
D2 behaviour predicted by our � formulation, (ii) D2 given by equation (27), (iii) χ for a BE
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(equations (35) and (41)) and (iv) AE–BE analogy. The good AE–BE agreement observed in
figures 3 and 4 therefore indicates the validity of all the above formulations used to derive the
c(BE)–χ(AE) relation.

The exponential decay of the tail of P(s) for the d > 2 AE system at the critical point
has been confirmed by various numerical studies (for example, see [7, 18, 20–22, 31]). The
validity of the AE–BE analogy requires a similar decay of P(s) for the critical BEs too.
Figure 1(b) compares P(s) behaviour for a few critical BEs with the function e−κs . The fitted
κ values are close to κ ≈ (βπ/8γ c) for intermediate c ranges; the κ–c relation is obtained by
using κ = (2χ)−1 and χ = (4γ c/βπ) at E = 0 (see below equations (35)). The insets in
figure 3 compare the tails of the P(s) for the AEs and their BE analogues with function e−κs ;
we find κ ≈ 1.5–1.7. The result is close to our analytical prediction κ ≈ 2 for the critical
AE case (see below equation (27)). However, the lack of exact agreement seems to suggest
the approximate nature of the χ–κ relation, namely, κ = (1/2χ) (note that as our analytical
prediction χ = 4γ c/βπ is found to be in excellent agreement with the numerics, this leaves
the χ–κ relation as the possible source of error).

The study [27] claims that the critical level statistics in the Rosenzweig–Porter ensemble
(similar to BE, as mentioned in section 2) does not have a fractional compressibility and,
therefore, is different in nature from that for critical AE. However, our analytical results,
supported by the numerical evidence, disprove their claim. Our numerical study confirms
the existence of a fractional χ , increasing with c, for various critical BEs. Two such cases
are shown in figure 4, with their χ results in close agreement with our analytical prediction,
namely, equations (35) and (41).

6. Connection with PRBM model

In past, a random matrix ensemble, namely the power law random banded matrix (PRBM)
ensemble, was suggested as a possible model for the critical level statistics of the Anderson
Hamiltonian [6]. A PRBM ensemble is defined as the ensemble of random Hermitian matrices
with matrix elements Hi j as independently distributed Gaussian variables with zero mean,

i.e. 〈Hi j〉 = 0, and variance 〈H 2
i j;s〉 = G−1

i j

[
1 + (|i − j |/b)2

]−1
, Gi j = β(2 − δi j) and

Gi j = 1/2. It is critical at arbitrary values of the parameter b and is believed to show all the
key features of the Anderson critical point, including multifractality of eigenfunctions and the
fractional spectral compressibility.

The success of the PRBM ensemble, a one-dimensional system, as a model for Anderson
systems in arbitrary dimension is a little surprising. However, it can be explained on the basis
of our formulation. The PRBM–AE connection is a special case of our study connecting any
generalized Gaussian ensemble with the BE. The PRBM ensemble being Gaussian in nature,
its complexity parameter can be defined by using equation (4) which can then be used to obtain
its BE analogue. Equation (4) gives (with γ = β)

Y − Y0 = 2

N(N + 2 − β)

N∑
r=1

(N − r)ln|1 + (b/r)2|2 (42)

which gives Y − Y0 ∝ f (b)/N with f (b) ≈ 2b0.85 ln(5b) for b � 1 and f (b) ≈ 2b1.75 for
b 
 1. As Y −Y0 ≈ o(1/N), R1 can then be given by equation (14). Following equation (15),
� for a PRBM ensemble is

�prbm(b, E) = f (b)F2(E)ζ 2 N−1. (43)

The well known size independence of level statistics for the PRBM case for all b values
requires �prbm to be N independent, which gives ζ ∝ N1/2 for all b ranges by our formulation.
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However, note that, for the PRBM model, 〈I2〉 ∝ N−D2 with D2 as a function of b [16, 17, 33].
The use of ζ ∝ 〈I2〉−1 in equation (43), therefore, gives a size-dependent �prbm. Keeping in
view the well known criticality of the PRBM system for all b ranges, it seems that the relation
ζ ∝ 〈I2〉−1 is not valid for the PRBM case.

Using the prediction ζ = ζ0 N1/2 in equation (43) and the relation �prbm = �b, the level
statistics of a PRBM can be mapped to a critical BE ensemble with

c = (4πβ�prbm)−1e−E2 = (4πβ f (b)ζ 2
0 F2(E)eE2

)−1. (44)

The spectral statistics of the PRBM therefore shows a crossover from Poisson (as c → ∞
for �prbm → 0 i.e. b → 0) to Wigner–Dyson behaviour (c → 0 for �prbm → ∞ or b → ∞).

The spectral compressibility χ for a PRBM ensemble at E = 0 can now be obtained by
substituting � = �prbm = f (b)ζ 2

0 in equations (34), (35) and (41) which give

χ =
{

1 − 4π2ζ 2
0 f (b) for b 
 1

(βπ2ζ 2
0 f (b))−1 for b � 1.

(45)

The above results are at least in the same form as obtained in [16, 17, 33]; the lack of explicit
knowledge of ζ0 prevents us from making any further comparison. As χ , in equation (45),
changes from zero to unity with decreasing b, it violates the relation (27) in the range b 
 1.
The same violation was observed in previous PRBM studies [16] too. Thus our results obtained
by using the PRBM-BE analogy seem to be in accordance with earlier studies on the PRBM
model.

In brief, the PRBM ensemble, with b as a parameter, can be mapped to the critical BE
with parameter c (see equation (44)). As a consequence, the studies suggesting the analogy
of spectral statistics for the PRBM and AE ensembles are in good agreement with our study
claiming the AE–BE analogy. By using the connection of PRBM with the MNS model [27, 32],
the PRBM–BE–AE analogy can further be extended to the MNS–BE–AE analogy.

7. Conclusion

Finally, we re-emphasize our main result.
Under the independent electron approximation, the level statistics for the disordered

systems undergoing a localization → delocalization transition of wavefunctions can be
described by the Brownian ensembles (with uncorrelated elements) undergoing a similar
transition.

The analogy helps us in making the following deductions.

(i) The transition in the statistics is governed by a single scaling parameter� = |Y−Y0 |
�2 (

ζ

L )2d =
f (

ζ

L ). The second equality follows from the dependence of wavefunction statistics
e.g. inverse participation ratio I2 and therefore ζ on the complexity parameter |Y − Y0|.

(ii) The level statistics is governed by the competition between the complexity parameter
and the local mean level spacing. The critical point of level statistics occurs when the
complexity parameter Y − Y0 and �l have the same size dependence. In particular, if
|Y − Y0| ∼ o(Nα) and �l ∼ o(Nβ) for a disordered system, its critical point will occur
when α − 2β = 0. However, if the local mean level spacing in the system changes at a
faster rate with size as compared to

√
Y − Y0 (i.e. β > α/2), the system will never reach

its critical state and will always remain in the localized regime.
(iii) The critical BE analogue of a critical AE is unique. Further, it is different for a critical

AE with and without time-reversal symmetry. Similar to AEs, the level statistics of BEs
shows a scaling behaviour as well as a critical point with fractional level compressibility.
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However, unlike AEs, χ turns out to be symmetry dependent for BEs, their parameter �

being symmetry independent.
(iv) The AE–BE analogy confirms the symmetry independence of the compressibility of levels

and the multifractality of the wavefunctions at the critical point of the Anderson transition.
The analogy also indicates the non-validity of the relation D2 = d(1 − 2χ) in the strong
multifractality limit, and the approximate nature of the relation κ = (2χ)−1.

(v) The AE–BE analogy helps us in formulating, for the first time, the exact two-point
level density correlation at the critical point of a disordered system. The formulation
is applicable for a wide range of system parametric conditions.

It should be noted that both MIT as well as WDT occur due to delocalization of the
wavefunctions. In fact, our analytical study suggests that the level statistics of almost all
complex systems undergoing a localization → delocalization transition follows the same route
although with different transition rates; the state of level statistics of two systems with different
complexity may correspond to two different points on this route. In principle, our analytical
work is applicable to the Gaussian models of complex systems only; however, the intuition
based on earlier studies suggests the validity of the results for the systems with other origins of
randomness too [3]. For example, the investigation of a number of dynamical systems seems
to support this intuition. It has been shown that the spectral statistics of pseudo-integrable
billiards is remarkably similar to the critical statistics of AE [35]. The presence of a statistics
intermediate between the Poisson and GOE has already been shown for the kicked rotor in
the non-integrable regime of the kicking parameter [36]. A correspondence of the integrable
systems to the insulators and of the chaotic systems to the metals is already known to exist. The
integrability → chaos transition in the dynamical systems therefore seems to follow a route
in the level statistics similar to that of the MIT; note that such a transition in classical systems
corresponds to a delocalization of the wavefunctions in their quantum analogue. Thus the
analogy of the statistical level fluctuations between the AE and BE may possibly be extended
to dynamical systems and the BE too; if the latter is found to be correct, the analogy would be
useful to obtain the correlations for the non-integrable regime.

The evidence of such an analogy would suggest the existence of several features, unknown
so far, for the level statistics of dynamical systems. For example, the analogy can be used to
intuitively claim and search for the existence of a critical point, the dimensional dependence of
level statistics and the multifractality of eigenfunctions during the transition from Integrable
to chaotic dynamics. It should be noted that a generic one-dimensional dynamical system
always shows a Poisson level statistics (in analogy with one-dimensional AE). However, the
dynamics in a three-dimensional system shows a feature called ‘Arnold diffusion’, absent in
lower dimensions. The intuition based on the above analogy suggests the possible existence
of a critical level statistics at the parametric values at which Arnold diffusion takes place. A
further exploration of such an analogy is therefore highly desirable.
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